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Digital Classification of Hillslope Position
Pedology

Hillslope position has long been important in soil geomorphology. At the 
scale of county-level soil maps, more soil boundaries are based on topogra-
phy than any other soil-forming factor. However, the inability to accurately 
delineate topographic breaks across hillslopes—either due to lack of suf-
ficient topographic resolution or the proper technology to develop and/or 
model them—hinders soil mapping efforts. In this research, we developed a 
decision tree model for classifying hillslope position, which was calibrated 
and validated using the observations of soil scientists in the field. Different 
decision tree structures were tested with classification breaks based on cali-
bration groups’ mean midpoints, median midpoints, and fuzzy membership. 
The final model objectively and quantitatively classifies the five major hill-
slope positions and performs well on different landscapes, making it suitable 
for efficient application to large areal extents. The resulting maps of hillslope 
position represent base maps that can be used to (i) improve research on 
toposequences by providing explicit definitions of each hillslope element’s 
location, (ii) facilitate the disaggregation of soil map unit complexes, and (iii) 
identify map unit inclusions that occur due to subtle topographic variation. 
Base maps developed by the model can also help identify areas of possible 
inaccuracies in soil maps, especially where soil boundaries cross topographic 
breaks. Predictions from the model enable the mapper to better place soil 
map unit boundaries at locations where defendable landscape breaks exist.

Abbreviations: CI, confidence index; DEM, digital elevation models; DTA, digital terrain 
analysis; MLRA, major land resource area; MO, MLRA office; OSD, official soil series 
description; PDF, probability density function; PrcP, profile curvature priority decision 
tree; PrcP-ci, PrcP based on confidence index; PrcP-mean, PrcP based on mean midpoints; 
PrcP-med, PrcP based on median midpoints; ReeP, relative elevation priority decision tree; 
ReeP-ci, ReeP based on confidence index; ReeP-mean, ReeP based on mean midpoints; 
ReeP-med, ReeP based on median midpoints; SlgP, slope gradient priority decision tree; 
SlgP-ci, SlgP based on confidence index; SlgP-mean, SlgP based on mean midpoints; SlgP-
med, SlgP based on median midpoints; SSURGO, Soil Survey Geographic dataset.

In 1968, Ruhe and Walker defined the five major hillslope profile positions 
(Fig. 1). The transferability of this model for fully developed slopes, regardless 
of climate, landscape age, or parent material, has been clearly demonstrated 

(Wood, 1942; King, 1957; Frye, 1959; Ruhe, 1975), becoming the standard for 
guiding myriad soil toposequence studies as well as for landscape description and 
segmentation in general (Conacher and Dalrymple, 1977; Pennock et al., 1987; 
Giles, 1998; Park and van de Giesen, 2004). Numerous studies—some of them 
landmark papers—have leaned on or otherwise built on this framework to exam-
ine the variability of soil properties across hillslopes (e.g., Furley, 1971; West et al., 
1988; Stolt et al., 1993; Kagabo et al., 2013; Tsatskin et al., 2013). Because of the 
interrelationships that exist between soil and vegetation, hillslope position has also 
become a useful framework in ecological studies (Monger and Bestelmeyer, 2006; 
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Arnold et al., 2009; Jien et al., 2010; Khalili-Rad et al., 2011; 
Koné et al., 2013).

For these reasons, topographic relationships have been 
used successfully by the USDA-NRCS Soil Survey Division 
(hereinafter referred to as Soil Survey), especially at scales where 
hillslope processes are a major factor in explaining the spatial 
variation of soils (e.g., Pregitzer, 1972; Dermody, 2009; Pulido, 
2011). Unfortunately, many county-scale soil maps were com-
piled using stereophotograph interpretations of terrain, which, 
although quite useful and predictive, suffer from three main 
shortcomings: (i) resolution visible in the base map (mainly 
aerial photographs) prevented the manual delineation of hill-
slope elements that may have been identifiable in the field, (ii) 
the minimum delineation size was limited by the cartographic 
medium of paper maps, and (iii) stereophotograph interpreta-
tion was a subjective evaluation of the landscape, and hence, var-
ied from person to person. Therefore, along with others (Hall 
and Olson, 1991; Smith and Hudson, 2002), we contend that 
topographic relationships need to be better represented in soil 
mapping endeavors. One possible way to accomplish this would 
be the establishment and application of more accurate and more 
objective definitions of landscape components such as hillslope 
position, using modern geographic technologies, and incorpo-
rating better base maps of topography into the mapping process 
(Miller and Schaetzl, 2014). Indeed, due to the limited resolu-
tion of stereophotographs and the manual interpretation of digi-
tal geographic data, current Soil Survey maps only differentiate 
some of the hillslope positions needed to make an accurate soil 
map (Zhu et al., 2001), often resulting in soil complexes rather 
than consociations, and many consociations are not as taxonom-
ically pure as they could be.

Recent advances in data and base maps have, however, 
helped alleviate some of these issues. For example, digital eleva-
tion models (DEM), such as those produced by LiDAR, provide 
the resolution necessary to identify small variations in topog-
raphy. Nonetheless, these data are often not fully leveraged to 
improve soil maps. Instead, high-resolution data are commonly 
used to predict map units that were designed for mapping with 
stereophotographs (e.g., Qi et al., 2008; Shi et al., 2009; Yang et 
al., 2011). Calibrating models on existing map unit delineations 
is problematic because those delineations carry with them the 
limitations of the base maps on which they were derived as well 

as the biases of the original mappers. In contrast, redefining map 
units to correspond with quantitative breaks associated with es-
tablished process zones would likely produce map units with less 
internal variability and greater consistency.

Soil Survey maps often contain complexes and consocia-
tions with known inclusions, largely because of the manual meth-
ods of delineation at the designated cartographic scale. When 
drawing map unit boundaries on paper maps, minimum map 
unit size restrictions become an issue (Hupy et al., 2004; Arnold, 
2006). In some cases, when the properties of such an inclusion 
are deemed important, it is indicated as a point or spot symbol 
(Soil Survey Staff, 1993). However, the symbol provides no in-
formation about spatial extent. Even if a higher resolution base 
map had been available, the time it would have taken to make 
the additional delineations would not have been practical with 
the available resources of the USDA-NRCS (Simonson, 1952). 
With GIS, however, complexity and cartographic scale no longer 
limit minimum delineations. Classifications can now be auto-
mated, greatly reducing time demands. The process of differenti-
ating composite soil map unit delineations into spatially explicit 
soil components is known as “disaggregation” (Thompson et al., 
2010; Odgers et al., 2014). Adding this additional level of detail 
to soil maps essentially results in the separation of areas that do 
not fit the taxonomic classification of the map unit, which results 
in increased map unit purity. Many of the differences for these 
inclusions are topographic in nature.

Finally, delineations on current Soil Survey maps have at 
times been relatively subjectively determined. Some criteria were 
developed by the soil scientists via customized soil series keys for 
the respective survey areas (Soil Survey Staff, 1993). However, 
those keys only reduced, but not completely eliminated, the sub-
jective interpretations of the features observable on stereophoto-
graphs. When using manual methods, any placement of a bound-
ary line based on topography depends on the mapper’s judgment. 
Further, in that situation, the level of detail actually included in 
a soil map is also dependent on the mapper’s judgment. GIS and, 
more specifically, digital terrain analysis (DTA) offer quantita-
tive tools for consistently placing delineations using a clearly de-
fined set of rules.

Hillslope position represents a composite of terrain char-
acteristics, that is, profile curvature, slope gradient, and rela-
tive elevation, which are mentally synthesized by soil scientists 
in the field (Ruhe and Walker, 1968; Fig. 1). Previous efforts 
have attempted to derive digital models for landform elements 
(MacMillan et al., 2000; Schmidt and Hewitt, 2004; Drăguţ and 
Blaschke, 2006; Qin et al., 2009), but none have sought to di-
rectly capture the expert knowledge of soil scientists. Perhaps for 
this reason, hillslope position has not yet been translated to digi-
tal methods. A robust model for hillslope position can bridge the 
gap between digital technologies and a large body of research that 
has established the utility of hillslope position to soil geomor-
phology. Theoretically, soil mapping efforts could take advantage 
of such a hillslope position base map and combine it with field 
knowledge to create soil maps using the increased precision and 

Fig. 1. Schematic of the five hillslope positions: summit (SU), shoulder 
(SH), backslope (BS), footslope (FS), and toeslope (TS) (after Wysocki 
et al., 2000 and Schoeneberger et al., 2012).
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efficiency of DTA. However, to do so, the five 
hillslope positions need to be defined in a man-
ner that is accurate, repeatable, and transferable 
across landscapes.

The purpose of this research is, therefore, 
to develop a digital model that standardizes the 
definition of hillslope position as identified by 
field soil scientists. Once developed, hillslope 
position classifications can be applied consis-
tently and objectively as improved base maps 
for soil mapping endeavors.

METHODS
General Setup

We utilized experts’ (soil scientists from the 
Soil Survey) observations of hillslope position in 
the field to determine the optimal segmentation 
of hillslopes. We then used land-surface derivatives 
from a LiDAR-based DEM as parameters for pre-
dicting these experts’ assessments.

The parameters for determining hillslope 
position are scale dependent, requiring soil scien-
tists in the field to mentally calibrate their analy-
sis scale for each land-surface derivative. To this 
end, Miller (2014) calibrated the optimal digital 
analysis scale for each of these terrain derivatives to the analysis 
scale used by soil scientists assessing hillslope position (i.e., slope 
at 9 m, profile curvature at 63 m, and relative elevation at 135 m). 
The present study builds on that work by using the same parameter 
analysis scales as inputs to a hillslope classification model. All ter-
rain analyses of slope gradient and profile curvature were conduct-
ed on LiDAR-derived, 3-m resolution elevation grids using the 
r.param.scale function in GRASS 6.4.2 (GRASS Development 
Team, 2014). Relative elevation was calculated on the LiDAR data 
using ArcGIS 10.1 (ESRI, 2014) with the analysis scale dependent 
method presented by Miller (2014).

Calibration of Decision Tree Structure
The hillslope position model was calibrated in Ottawa 

County, MI. The county includes a wide variety of terrain, most-
ly derived from Late Wisconsin glaciation (Pregitzer, 1972). Its 
topography ranges from flat, lake, and outwash plains to hum-
mocky till plains. Areas of high relief sand dunes also occur near 
the Lake Michigan shore. Slope gradients range from 0 to 80%, 
with a mean slope gradient of 5% (9-m analysis scale).

Field observations of hillslope position in Ottawa County 
were collected by NRCS soil scientists working out of the Grand 
Rapids office (MLRA office [MO] 11-7, major land resource 
area [MLRA] 97). These observations were commonly collected 
to better understand boundaries between map units that have 
proven difficult to delineate. A pool of 1039 GPS-located, field 
observations recorded by the soil scientists and taken as 8 to 10 
point transects with 40- to 80-m spacing were used for calibra-
tion in this study (Fig. 2). At each point, the mapper made notes 

regarding soil properties and their interpretation of hillslope 
position. These points were intersected with the DTA grids of 
the model parameters and grouped by the field assessment of 
hillslope position. Due to limitations in detecting subtle varia-
tions for classifying some locations, especially in flat areas, not 
all observation points included a description applicable to all 
components of hillslope position determination. For example, 
411 points were described as “flat.” Although these points could 
not be used to calibrate breaks for relative elevation, they were, 
however, used to populate assessment groups for slope gradient 
and profile curvature.

Next, a decision tree approach was used to model the syn-
thesis and differentiation of the land-surface derivatives for de-
termining hillslope position. In all decision trees, the first level 
of criteria was calibrated for two classification breaks to create 
three overall categories. The remaining levels of the decision trees 
then only required a single break to make two categories within 
the respective branches of the tree. There were only three pos-
sible combinations of the parameters for the decision trees due 
to the use of three categories at the top tier. This research tested 
all three decision tree hierarchy structures. The initial decision 
tree hierarchy differentiated hillslope positions first by profile 
curvature, then by slope gradient, and finally by relative eleva-
tion. Because this hierarchy emphasized profile curvature at the 
top level, it will be referred to as the profile curvature priority 
decision tree (PrcP) (Fig. 3a). The second hierarchy differenti-
ated hillslope positions first by slope gradient and then by pro-
file curvature and relative elevation (Fig. 3b) and will be referred 
to as the slope gradient priority decision tree (SlgP). The third 

Fig. 2. Distribution of calibration points in Ottawa County, MI. Each set of points represents 
a transect, walked by NRCS field soil scientists, usually with 8 to 10 field observations.
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hierarchy differentiated hillslope positions first by relative eleva-
tion and then slope gradient and will be referred to as the rela-
tive elevation priority decision tree (ReeP) (Fig. 3c). In this last 
hierarchy, the classification did not use profile curvature because 
the first two tiers fully differentiated all five hillslope positions.

Calibration of Classification Breaks
Three methods for assigning category membership were 

tested on each of the three decision tree structures, leading to nine 
experimental iterations. For each model parameter, the calibration 
points were sorted into assessment groups as per the definitional 
category of the observed hillslope position (Table 1). The assess-
ment groups were concave, linear, and convex for profile curvature 
(reduced to concave vs. convex when only two categories were 
needed). For slope gradient and relative elevation, the assessment 
groups were low, medium, and high (reduced to low vs. high as 
needed). Descriptive statistics for the DTA values within the as-

sessment groups were calculated and used as a basis for quanti-
tative calibration of breaks between groups.

The first method for calibrating classification breaks used 
the assessment group means as the central concept for the re-
spective groups. The mean of two adjacent central concept val-
ues (midpoint) was used as the break between the two groups. 
Because of a few extreme values, particularly with regard to 
slope gradient, the second calibration method used the assess-
ment group medians, instead of the mean, as the central con-
cept. The third method evaluated for calibrating classification 
breaks allowed for the possibility that assessment groups had 
dissimilar variability. A confidence index (CI) of membership 
was constructed based on a normal probability density func-
tion (PDF) generated from the respective group’s mean and 
SD. The resulting values were then scaled to set the group mean 
with a CI value of one. Parameter values on the opposite side 
of the mean from all other assessment groups were assigned a 
CI of one plus the inverse result of the PDF. The resulting theo-
retical CI distribution is illustrated in Fig. 4. For hillslope clas-
sification purposes, locations were categorized into the group 
for which the location had the highest CI of membership, es-
sentially “hardening” the fuzzy memberships.

Validation and Transferability
To test the validity of the respective models, the maps 

produced by each of the models for Ottawa County were 
compared with 262 field observations taken by the same staff 
that collected the calibration points; these latter points were 
individual observations not taken as part of the transects used 

for calibration. Of these latter points, the field observer was able 
to classify the point to hillslope category in 189 instances. In the 
73 cases where the field soil scientist associated a point with two 
different hillslope positions (e.g., summit–shoulder), a prediction 
of either position from the model was accepted as valid. Each cali-
brated model was evaluated by determining the agreement (per-
cent) between soil scientists’ field observations and the model pre-
diction, as well as with confusion matrixes (Longley et al., 2011).

The transferability of the model to other terrains was tested 
by applying the models calibrated in Ottawa County, MI to two 
counties in Iowa (Dickinson and Cedar) (Fig. 5), using 3-m resolu-
tion elevation grids obtained from the Iowa Department of Natural 

Fig. 3. Flow diagrams for the three classification tree hierarchies that were tested.

Table 1. Categories of terrain parameters employed in this study.

Hillslope position Slope Profile curvature Relative elevation

Summit (SU) Low Linear High
Shoulder (SH) Medium Convex High

Backslope (BS) High Linear Middle

Footslope (FS) Medium Concave Low
Toeslope (TS) Low Linear Low

Fig. 4. Conceptual illustration of the confidence index (CI) used for 
determining fuzzy class membership. The shape of the CI curve for the 
middle class is calculated by a normal probability density function (PDF) 
based on the calibration assessment group’s mean and SD. Confidence 
index values for the low and high classes are calculated in the same 
manner, except that values on the opposite side of the mean from other 
classes are calculated as one plus the inverse of the PDF result.
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Resources, which were based on 2007 to 2009 
LiDAR data (IDNR, 2009). Hillslope position 
validation points here were field observations 
with locations recorded by GPS and obtained 
from the Soil Survey Office in Waverly, IA 
(MO 10-11, MLRA 104). Dickinson County 
had 75 and Cedar County had 35 field obser-
vations. The amount of agreement was assessed 
in the same manner as for Ottawa County.

Like the Michigan study area, Dickinson 
County, IA is dominated by glacial landforms 
but with a large proportion of closed basins 
(Pulido, 2011). The area consists primarily of 
till, glaciolacustrine, and outwash plains. The 
mean slope gradient in the area is 3% (9-m 
analysis scale). Cedar County’s physiography 
has been classified as southern Iowa drift plain 
except for some Iowan erosion surface in the 
northern part of the county (Ruhe, 1969; 
Dermody, 2009). Across the county, pre-
Illinoian glacial deposits have been dissected 
through several episodes of landscape devel-
opment (Bettis, 1989). Slope gradients in the 
area have a mean of 5% (9-m analysis scale).

The model determined to have the high-
est agreement with validation points in all 
three study areas was subsequently compared 
with the current Soil Survey map delineations. 
Zonal statistics of the hillslope position classi-
fications based on map units in the Soil Survey 
Geographic dataset (SSURGO; Soil Survey 
Staff, 2013b) were used to compare the two 
maps. This test identified the percent of existing map unit delinea-
tions that were classified into the different hillslope positions by 
the selected model.

RESULTS AND DISCUSSION
Calibration

Using data obtained from the calibration points, we gener-
ated descriptive statistics of the assessment groups (Table 2) and 
used them to calculate classification breaks for the hillslope classes. 
Each of the assessment groups, two to three per model parameter 
depending on the decision tree, exhibited non-
normal distributions and different amounts 
of variation. Therefore, the use of assessment 
groups’ mean vs. the median and the consid-
eration of respective assessment groups’ SD 
resulted in unique classification breaks for 
each calibration method. For comparison, the 
determined classification breaks for the mean 
midpoint, median midpoint, and the equiva-
lent break values for the CI (after hardening 
the fuzzy classification) are presented in Table 
3. The calibrated breaks for concave–convex 

profile curvature and low–high relative elevation should, by defini-
tion, be zero. Compared to the other two calibration methods, the 
median midpoint based breaks are the closest to meeting that defi-
nition. The hardened CI breaks are generally similar to the mean 
midpoint calibration method but are tempered by the larger SDs 
for steeper slope groups and the middle relative elevation group.

Ottawa County Validation
For Ottawa County, the decision tree models correctly pre-

dicted between 36 and 59% of field scientists’ assessments of hill-
slope position (Table 4). Disagreements occurred because of a 

Fig. 5. Map of the counties used for developing the hillslope position classification model. 
Dickinson County, IA (a) and Cedar County, IA (b) were used to test the transferability of the 
models that were originally calibrated and validated in Ottawa County, MI (c).

Table 2. Statistics of calibration points categorized into the assessment groups of 
each model parameter.

Model parameter
Assessment 

group
Mean Median SD Count

Slope gradient 
(9-m analysis scale)

Low 2.20% 1.61% 2.60% 577

Medium 6.41% 3.16% 8.27% 218

High 14.17% 7.02% 15.78% 171

Profile curvature  
(63-m analysis scale)

Concave −0.00538° m−1 −0.00120° m−1 0.02193° m−1 105

Linear −0.00021° m−1 −0.00004° m−1 0.01938° m−1 751

Convex 0.00388° m−1 0.00136° m−1 0.01500° m−1 111

Relative elevation  
(135-m analysis scale)

Low −2.16 m −0.74 m 4.41 m 206

Middle −1.18 m −0.03 m 8.53 m 166

High 1.35 m 0.55 m 6.33 m 200

Table 3. Classification breaks calibrated from the assessment group statistics of each 
model parameter.

Model parameter Breaks Mean midpoint Median midpoint Hardened CI†

Slope  
(9-m analysis scale)

Low–medium 4.30% 2.37% 3.19%
Medium–high 10.28% 5.08% 9.08%

Low–high 8.19% 4.31% 3.89%

Profile curvature  
(63-m analysis scale)

Concave–linear −0.00279° m−1 −0.00062° m−1 −0.00263° m−1

Linear–convex 0.00184° m−1 0.00066° m−1 0.00210° m−1

Concave–convex −0.00075° m−1 0.00008° m−1 0.00012° m−1

Relative elevation  
(135-m analysis scale)

Low–middle −1.67 m −0.38 m −1.83 m

Middle–high 0.09 m 0.26 m 0.28 m
Low–high −0.40 m −0.10 m −0.71 m

† CI, confidence index.
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combination of DEM errors, positional uncertainty, and the sub-
jectivity associated with human judgment of slope position. The 
SlgP decision tree, using the classification breaks based on mean 
midpoints, had the highest level of agreement with field assess-
ments; the agreement rates for the CI based SlgP were nearly as 
high. The agreement rates were also nearly as high for the mean 
midpoints and CI calibration methods for PrcP. Although the 
influence of different SDs between assessment groups shifted the 
CI based breaks, the shift did not have a large impact on general 
agreement results for any of the decision tree structures. Greater 
differences in model results were observed in the confusion ma-
trices (Fig. 6–8).

To compare models, the classification break calibration 
method was abbreviated in conjunction with the decision tree 
structure abbreviation (e.g., PrcP based on mean midpoints 

[PrcP-mean], PrcP based on median midpoints [PrcP-med], 
PrcP based on confidence index [PrcP-ci]). The PrcP-mean and 
PrcP-ci models tended to over classify points as summits and 
toeslopes, particularly for those points identified as backslopes 
by the soil scientists. This issue implied that the break between 
low and high slope gradient was set too high (mean midpoint 
= 8.19%, CI = 3.89%) for those models (Fig. 3a). A similar pat-
tern can be seen in the confusion matrixes for the SlgP-mean and 
SlgP-ci models, but these models had more misclassifications for 
shoulder and backslope positions. This issue for the SlgP-mean 
and SlgP-ci models implied a similar problem: the break between 
low and medium slope gradients (mean midpoint = 4.29%, CI = 
3.19%) was set too high (Fig. 3b).

The overall performance levels of the PrcP-med and SlgP-
med models were lower than the PrcP-mean, SlgP-mean, PrcP-ci, 
and SlgP-ci models. However, the PrcP-med and SlgP-med con-
fusion matrices showed closer agreement between field observa-
tions and model predictions when they did not agree exactly. For 
both of these models, the highest number of misclassifications 
was always in a neighboring category. The SlgP-med performed 
better than the PrcP-med model; more often it correctly classi-
fied backslope positions. The SlgP-med model separated all areas 
classified as having high slope gradients as backslopes, suggesting 

Fig. 6. Confusion matrixes for classification breaks based on the 
midpoint between assessment groups’ means for (a) profile curvature 
priority (PrcP) decision tree (kappa = 0.44), (b) slope gradient priority 
(SlgP) decision tree (kappa = 0.49), and (c) relative elevation priority 
(ReeP) decision tree (kappa = 0.27). SU, summit; SH, shoulder; BS, 
backslope; FS, footslope; TS, toeslope.

Table 4. Percent agreement between soil scientists’ field assess-
ments and each hillslope position models’ prediction by each 
classification break calibration method for Ottawa County, MI.

Model† Mean Median Confidence index
PrcP 58% 46% 57%
SlgP 59% 53% 58%
ReeP 38% 42% 36%
†  PrcP, profile curvature priority decision tree; ReeP, relative elevation 

priority decision tree; SlgP, slope gradient priority decision tree.

Fig. 7. Confusion matrixes for classification breaks based on the 
midpoint between assessment groups’ medians for (a) profile 
curvature priority (PrcP) decision tree (kappa = 0.35), (b) slope 
gradient priority (SlgP) decision tree (kappa = 0.46), and (c) relative 
elevation priority (ReeP) decision tree (kappa = 0.36). SU, summit; 
SH, shoulder; BS, backslope; FS, footslope; TS, toeslope.
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that slope gradient was the most important parameter for iden-
tifying backslopes.

The ReeP models all had difficulty classifying backslope po-
sitions. Although using group medians to define central concepts 
improved model performance, the ReeP-med model still had 
successful prediction rates substantially lower than the PrcP and 
SlgP models. The classification errors for the ReeP models sug-
gested that the range for middle relative elevation was too wide 
and the break between middle and high relative elevations was 
too low (classification ranges for middle relative elevation: mean 
midpoint = −1.67–0.09 m, median midpoint = −0.38–0.26 m, 
and CI = −1.83–0.28 m; Fig. 3c). The ReeP-ci model’s perfor-
mance was slightly improved by a higher middle-high classifica-
tion break but not enough to improve its correct prediction rate. 
The ReeP-med model had the highest performance of the ReeP 
calibration methods because it was unaffected by a few extremely 
low relative elevation values in the calibration data set.

Validation in Different Landscapes 
(Transferability)

Using the classification breaks calibrated in Ottawa County, 
the decision tree models were applied to the two counties in 
Iowa. The performance of most of the models was reduced when 

applied outside of the calibration area (Table 5). The models 
performed better in Cedar County, probably because its relief 
was more similar to that of Ottawa County. However, unlike the 
other models, the SlgP-med model performed consistently well 
in all three landscapes. Despite not being calibrated for the re-
spective counties, the SlgP-med model was still able to predict 
field assessment of hillslope position at a rate comparable to the 
best performing models in the calibration area (Fig. 9).

The SlgP-med decision tree consistently had the highest 
prediction success rates (52–54%), indicating that its logic best 
matches the mental model used by soil scientists in the field. 
This model first determined if a location had a low, medium, or 
high slope gradient. Medium slope gradients were then differ-
entiated by slope shape as either convex (shoulder) or concave 
(footslope). Finally, any remaining flat areas were examined as to 
whether they had a high (summit) or low (toeslope) relative el-
evation. This sequence may not necessarily match every field sci-
entists’ thought process; many may determine hillslope position 
more by intuition than a stepwise decision process. Nonetheless, 

Fig. 8. Confusion matrixes for classification breaks based on the 
confidence index (CI) to differentiate parameters for (a) profile 
curvature priority (PrcP) decision tree (kappa = 0.45), (b) slope gradient 
priority (SlgP) decision tree (kappa = 0.49), and (c) relative elevation 
priority (ReeP) decision tree (kappa = 0.28). SU, summit; SH, shoulder; 
BS, backslope; FS, footslope; TS, toeslope.

Table 5. Percent agreement between soil scientists’ field 
assessments and each hillslope position models’ prediction by 
each classification break calibration method.

Model† Mean Median Confidence index

Dickinson County, IA
PrcP 19% 21% 25%
SlgP 29% 52% 36%
ReeP 12% 12% 11%
Cedar County, IA
PrcP 49% 34% 51%
SlgP 46% 54% 49%
ReeP 34% 37% 31%
† PrcP, profile curvature priority decision tree; ReeP, relative elevation 
priority decision tree; SlgP, slope gradient priority decision tree.

Fig. 9. Confusion matrix for slope gradient priority (SlgP)-med model 
prediction of field assessments of hillslope position in Dickinson 
(kappa = 0.35) and Cedar Counties (kappa = 0.37). SU, summit; SH, 
shoulder; BS, backslope; FS, footslope; TS, toeslope.
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the SlgP decision tree, using classification breaks determined by 
the median midpoint method, best predicted the field scientists’ 
classification in the three different landscapes. The 52 to 54% 
success rate was excellent, given that the three model parameters 
only agreed with the field scientists’ assessment of the landscape 
69 to 79% of the time. This suggested that the largest issue in 
digitally replicating expert knowledge was not in the classifica-
tion process but rather in the characterization of terrain proper-
ties. Methods for measuring landscape morphology in the field 
are different from digital methods. This leads to many potential 
discrepancies between expert knowledge and digital models.

A Quantified Definition for Hillslope Position
Based on the consistent performance of the SlgP-med mod-

el for predicting field assessment of hillslope position, an expert-
based definition for digital classification of hillslopes was estab-
lished. In this model, which we present and utilize in the rest of 
this paper, the median midpoint calibrated breaks for profile 
curvature (convex–concave = 0.00008° m−1) and relative eleva-
tion (low–high = 0.1 m) are practically zero. Simply setting these 
breaks as zero would be consistent with model tests. Therefore, 
we recommend the classification model shown in Fig. 10 for 
digitally determining hillslope position. This model is available 
at www.geographer-miller.com/relief-analysis-toolbox.

Although the calibrated breaks for slope gradient appear 
low, as compared to slope gradients typically observed in the 
field, the break at 5% corresponds with a well-established thresh-
old for slope processes (Pennock et al., 1987). For example, Savat 
and DePloey (1982) and Govers (1985) observed that slope 
gradients below 2 to 3° (3.5–5.2%) did not produce sufficient 
erosive energy to form rills.

Map–Model Comparisons
Visual Assessment

Soil Survey Geographic dataset soil map delineations were 
overlaid onto maps generated by the selected hillslope position 
model (SlgP-med) to identify differences between the digital hill-

slope position map and the Soil Survey map. We began with visual 
assessments. Landscapes often do not match the idealized illustra-
tions of hillslope position presented in textbooks and guidebooks. 
For this reason, the consistent application of quantitative hillslope 
classification rules resulted in a map that did not always have se-
quential patterns of hillslope position in their complete sequence. 
Nonsequential hillslope positions often do occur, for example, 
shoulders directly above toeslopes, as can be observed in both the 
digital hillslope position classification map and the Soil Survey 
map (Fig. 11). Landscape mapping of hillslope positions focuses 
on classifying areas that meet functional definitions for processes 
rather than always dividing hillslopes into the five “classic” com-
ponents. For example, there may be no true summit positions if 
the landscape does not have upland areas that are low enough in 
slope gradient or linear enough in profile curvature to function like 
a summit. Similarly, a slope that does not include an area that is 
sufficiently steep or linear in curvature to be a backslope will have 
shoulders directly adjacent to footslopes.

The hillslope position maps created using the model add 
high-quality topographic detail to current Soil Survey map de-
lineations (Fig. 11b). The Soil Survey maps would not have been 
expected to agree exactly with the model equivalents because of 
the poorer quality base maps used to create the 1:15,840 Soil 
Survey maps. Maps generated by the hillslope position model 
should be more accurate classifications of the landscape because 
they apply soil scientists’ logic consistently (without the need to 
generalize inclusions) and because they utilize much better topo-
graphic data. Also, LiDAR-based, bare Earth, digital elevation 
data (used to generate the model maps) include subtleties in the 
landscape often obscured on aerial photographs by vegetative 
cover or otherwise undetectable in the field.

Zonal Statistics
Using the SSURGO map units (Soil Survey Staff, 2013b) 

as zones, zonal statistics were performed on classifications from 
the hillslope position model for each of the three study areas. The 
digitally classified hillslope positions were summarized by the per-

cent of the map unit classified in the 
respective hillslope positions. For sim-
plicity, we focus on the major soil as-
sociations within each study area.

For the majority of Soil Survey 
map units, the model classified the 
various hillslope units consistently 
with the official soil series description 
(OSD; Soil Survey Staff, 2013a). For 
example, on the loess parent mate-
rial in Cedar County, the Muscatine 
soil series (fine-silty, mixed, superac-
tive, mesic Aquic Hapludolls) were 
predominantly mapped on summits 
(Fig. 12). The pattern of agreement 
continued through the summit–
shoulder Downs (fine-silty, mixed, Fig. 10. Flow diagram for the calibrated, digital hillslope position model. Note that profile curvature was 

calculated as described by Wood (1996) and relative elevation was calculated as described by Miller (2014).
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superactive, mesic Mollic Hapludalfs) and Tama (fine-silty, 
mixed, superactive, mesic Typic Argiudolls) soils. The Soil 
Survey’s block diagrams suggested that both Downs and Tama 
soils are mapped across summit, shoulder, and backslope po-
sitions (Soil Survey Staff, 2009). As the slope class increased, 
the percentage of the soil series mapped within backslopes in-
creased. The upland depressional, Garwin soil series (fine-silty, 
mixed, superactive, mesic Typic Endoaquolls) had the major-
ity of its area mapped on toeslopes. The floodplain complex of 
the Colo and Ely soil series (fine-silty, mixed, superactive, mesic 
Cumulic Endoaquolls and fine-silty, mixed, superactive, mesic 
Aquic Cumulic Hapludolls, respectively) was predominantly 
mapped on footslopes and toeslopes. This example illustrates 
how the hillslope position model generally matched soil series 
concepts as mapped in the field. We will argue below that the 
model also can add important information about the precise 
locations of the map unit boundaries between many of these 
soil series. This information can be invaluable in upgrading such 
maps and in assessing error or uncertainty for them.

On the hummocky till plain of Dickinson County (Fig. 
13), where hillslope segments tend to be small, a change in 
dominant hillslope position could be observed through a se-
quence of slope classes. The upland convex Clarion soil series 
(fine-loamy, mixed, superactive, mesic Typic Hapludolls) pro-
gressed from being mapped primarily on summits, to more so 
on shoulders, to predominately on backslopes on the sequence 
of B, C, and D slope classes. In this landscape of numerous 
closed basins, the swales between convex hills have been filled 
in with local alluvium, resulting in only small areas meeting the 
definition of footslopes. Concave and depressional soil series 
such as Canisteo (fine-loamy, mixed, superactive, calcareous, 
mesic Typic Endoaquolls), Harps (fine-loamy, mixed, superac-
tive, mesic Typic Calciaquolls), and Okoboji (fine, smectitic, 
mesic Cumulic Vertic Endoaquolls) were mapped on footslopes 
in some areas but were predominantly delineated on toeslopes.

Where the OSD did not specify slope position or shape, such 
as for many of the soils in Ottawa County (Fig. 14), a correspon-
dence between hillslope position and drainage class (DC) was used 
to match delineations. For example, the poorly drained Sims soil 
series (fine, mixed, semiactive, nonacid, frigid Mollic Epiaquepts) 
was predominantly mapped on toeslopes. However, slope class still 
distinguished the B slope Kawkawlin soils (fine, mixed, semiactive, 
frigid Aquic Glossudalfs) that were mapped on footslopes from the 
Kawkawlin soils on A slopes, which were mostly mapped on toes-
lopes. In contrast, the Nester soil series (fine, mixed, semiactive, frig-
id Oxyaquic Glossudalfs) was illustrated in the Soil Survey’s block 
diagram as occurring on various types of upland sites. Nester soils, 
therefore, represent an example of a consociation that could ben-
efit from disaggregation based on hillslope position. For example, 
Nester soils on backslope and shoulder slope areas may better match 
a different series definition, perhaps one that has a thinner solum or 
has different interpretations as to land use.

Use and Applicability
Classification of Finer Details

For topography, the problem of coarse resolution base 
maps has largely been solved by the advent of technologies such 
as LiDAR. Further, GIS data formats remove the cartographic 
limitation of a minimum area that can be represented on a soil 
map. However, neither of these developments addresses the issue 
of the time required to manually delineate the additional bound-
ary lengths. Fortunately, classification models in a GIS can auto-
mate the delineations with quantified definitions. The classifica-
tion model presented here solves the automation problem with 
quantified definitions that have been substantiated by field soil 
scientists working in multiple environments.

An example of where automated classification of hillslope po-
sition can delineate small inclusions can be observed in Dickinson 
County, IA. Here, many obvious map unit inclusions have been 
identified by the Soil Survey as point locations, probably because of 
map scale limitations. Most occur as small, isolated depressions of 
wetter soils, often in close proximity to areas classified as toeslopes. 
The positional offset between some of the inclusion (spot) points 
and the areas digitally identified as isolated toeslopes is shown in Fig. 
15. This offset is likely due to the resolution limitation of the base 
map on which the original inclusion points were drawn and the or-
thorectification process required to digitize the paper soil map. This 

Fig. 11. (a) Soil Survey Geographic dataset (SSURGO) map unit delineations 
(Pulido, 2011) overlain onto a hillshade of the LiDAR elevation grid in 
Dickinson County, IA. (b) The same map but also showing hillslope positions 
as determined by the terrain classification of the selected (slope gradient 
priority [SlgP]-med) hillslope position model. Note the many areas that 
transition directly from summit to toeslope or shoulder to footslope. SU, 
summit; SH, shoulder; BS, backslope; FS, footslope; TS, toeslope.
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positional difference illustrates the advantage of utilizing the more 
spatially accurate LiDAR data for the construction of soil maps. 
Further, the resolution of this digital base map removes the need to 
separately represent these inclusions as points. The digital hillslope 
position model delineated these small areas in an accurate, automat-
ed, and efficient manner.

Opportunities for Disaggregation of Soil Map Units
Disaggregation is the separation of a map unit into com-

ponent parts. This effort has become a priority of the NRCS, 
as the agency strives to produce more homogeneous map units, 
particularly using remote methods with increased user knowl-

edge-based models (NCSS, 2014). 
If these types of soil bodies were not 
mapped separately, it is because the 
mapper (i) was unable to observe 
the differences in the field or on the 
aerial photograph, (ii) was unable to 
map these areas out because of mini-
mum mapping area issues, and/or 
(iii) determined that the differences 
were so small as to not affect classifi-
cation, use, or management.

Perhaps the best way to concep-
tualize a homogeneous and taxonom-
ically pure map unit is to consistently 
define or map it on only one hillslope 
position. Map units that span several 
hillslope positions are more likely to 
contain inclusions of other soil series. 
The digital model can accurately and 
objectively identify these topograph-
ically different areas and, hence, bet-
ter assist in the disaggregation effort.

Across our study areas, we have 
observed that most soil map units 
that span different hillslope posi-
tions occur on flat landscapes such 
as glaciolacustrine plains and flood-
plains. As described above, the model 
recognizes most flat areas as either 
summits or toeslopes. A slight rise in 
elevation in an area like a floodplain 
will force the model to classify the 
area as a summit. Similarly, the model 
can easily identify small depressional 
areas on such surfaces. If the hillslope 
position classification is being used 
as a base map, the mapper can decide 
if the differences in soil properties 
for these small areas are significant, 
relative to the soil map’s purpose. 
Areas of slightly higher elevation on 
a floodplain may have slightly deeper 

water tables and will be slightly less flood-prone. Depressional 
areas will be wetter. Use of the hillslope position model to iden-
tify such areas has great potential to improve existing soil maps, 
especially regarding to disaggregation and reducing map unit er-
ror. Obviously, land use decisions using maps with this addition-
al amount of detail (and accuracy) would be greatly enhanced. 
Additional examples and applications of the model for desegre-
gation of soil map units are provided below.

Soil series like Nester, which occurs across a number of land-
scape positions (Fig. 14), are likely to contain considerable varia-
tion in soil properties due to the effect of topography (i.e., hillslope 
position). Areas like these are often not mapped in great detail 

Fig. 12. Zonal statistics for the hillslope position model by the Soil Survey Geographic dataset (SSURGO) map 
units in Cedar County, IA. For reference, block diagrams of the Tama–Downs–Muscatine soil association are 
also provided (modified from the NRCS Soil Survey Staff, 2009). SU, summit; SH, shoulder; BS, backslope; 
FS, footslope; TS, toeslope; PD, poorly drained; SPD, somewhat poorly drained; WD, well drained.
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due to the combination of mapping difficulty and the perceived low 
return on investment for the extra mapping effort. However, appli-
cations such as environmental and ecological services (Goodchild 
et al., 1996; Anderson et al., 2006; Peschel et al., 2006; Clothier et 
al., 2011) highlight the importance of disaggregating such areas. 
We note that current mapping methods do not facilitate the subdi-
viding of these areas. Using the hillslope position model, however, 
soils in existing Nester map units could be easily differentiated by 
hillslope position, and each of these positions could be examined 

to determine whether it would be best mapped out as a different 
series or drainage class or simply as Nester but within a different 
slope class. In either case, land use decisions made from a much 
more detailed soil map would be greatly enhanced (Fig. 16).

Opportunities for disaggregation are not limited to low 
relief or nonagricultural areas as discussed above. For ex-
ample, the Fayette (fine-silty, mixed, superactive, mesic Typic 
Hapludalfs), Bassett (fine-loamy, mixed, superactive, mesic 
Mollic Hapludalfs), and Kenyon (fine-loamy, mixed, superac-
tive, mesic Typic Hapludolls) soil series in Cedar County, IA 
are all described (Soil Survey Staff, 2013a) as occurring on in-
terfluves and sideslopes. Figure 17 demonstrates how the model 
is able to identify discrete areas of summits and shoulders with-
in existing Fayette delineations, which technically may match 
better with the Downs soil series. In fact, for part of an inter-
fluve shown in Fig. 17 an area of Downs soil is delineated on 
the summit–shoulder within a Fayette delineation, although 
similar locations in the vicinity are not. Such mismapped areas 
can be easily spotted and the map errors rectified simply by ap-
plying our hillslope classification model.

Consistent Line Placement
Visual comparisons of boundary placement on standard, coun-

ty-scale Soil Survey maps vs. slope elements identified by the hill-
slope position model show many areas of close agreement (Fig. 11, 
15, and 17). However, many other map unit boundaries on current 
Soil Survey maps also deviate from the natural slope breaks deter-
mined by the model. While the delineations of the hillslope model 
are consistent applications of classification rules, the Soil Survey lines 

are subjective human interpretations and have been developed using 
inferior topographic data, that is, aerial photographs, many of which 
have extensive areas of monotonous vegetation across topographically 
complex landscapes. It is not unexpected that such manual methods 
of interpreting complex topographic information will lead to variable 
line placement among different mappers or even by the same mapper. 
Hence, we argue that application of our model provides a low-risk and 
cost-efficient way of identifying areas where map unit boundaries are 

disjunct from boundaries associated with slope elements. These types 
of data can be used to improve existing soil maps. For example, in Fig. 
11, both the Soil Survey delineations and the hillslope position classi-
fication display generally similar landform patterns. But, in addition 
to showing more detail, the hillslope position classification suggests 
many areas where the Soil Survey delineation should be shifted, ex-
tended, or otherwise reshaped. In the higher relief of Cedar County, 
IA, a critical break between lowlands, backslopes, and uplands is rec-
ognizable in both the manual and digital delineations (Fig. 17). In 
contrast to the Soil Survey delineations, the hillslope position model 
identifies smaller patches of lowlands (likely due to the minimum 
delineation size in the Soil Survey map) and more complex shapes 
for dividing the upland from backslopes. Figure 15 shows similar 
types of differences, with the hillslope position model suggesting 
better line placement for separating Clarion (fine-loamy, mixed, su-
peractive, mesic Typic Hapludolls), Storden (fine-loamy, mixed, su-
peractive, mesic Typic Eutrudepts), and Crippin (fine-loamy, mixed, 

Fig. 15. Examples of depressional map unit inclusions identified by Soil 
Survey Staff and located within delineations of the convex Clarion map 
unit in Dickinson County, IA. Note the proximity of the inclusion points to 
isolated areas of toeslopes. In (a) plan view and (b) perspective view (relief 
exaggerated 3´). Also note that many of the soil map unit boundaries do 
not correspond to breaks in hillslope position. SlgP, slope gradient priority 
decision tree; SSURGO, Soil Survey Geographic dataset.

Fig. 16. Map showing areas of the Nester soil series in Ottawa County, 
which occurs on varying types of upland topography (Fig. 14). Application 
of the hillslope position model to this landscape efficiently differentiates 
the many different kinds of slope elements that exist within Nester soil 
delineations. SlgP, slope gradient priority decision tree.
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superactive, mesic Aquic Hapludolls) soils from Canisteo 
(fine-loamy, mixed, superactive, calcareous, mesic Typic 
Endoaquolls), Okoboji (fine, smectitic, mesic Cumulic Vertic 
Endoaquolls), and Blue Earth (fine-silty, mixed, superactive, 
calcareous, mesic Mollic Fluvaquents) soils. Examples such as 
those mentioned here are limitless.

CONCLUSIONS
We developed, calibrated, and presented a land-

scape classification model that reliably identifies the five 
standard hillslope positions using LiDAR data as the 
input topographic data. The use of such data for these 
applications is substantiated by the long history of using 
hillslope position in NRCS soil research and mapping. 
The model structure and breaks were calibrated to the 
experience of soil scientists in the field. The resulting hill-
slope position model consistently provides good agree-
ment with soil scientists’ field assessments.

The digital classification of hillslope position, as pro-
vided by the model we present here, improves on human 
assessment by efficiently applying rules of classification 
consistently and objectively across the landscape. This 
approach reduces the variability in such classifications 
due to human error, bias, and judgment, which are often 
introduced by interpretation of low resolution topo-
graphic and stereophotographic data. Application of this 
model’s output can help identify areas that meet the cri-
teria for different hillslope elements but were previously 
unmapped due to cartographic, base map, or resource 
limitations. Identification of hillslope elements of all sizes, 
regardless of map unit extent, presents an excellent oppor-
tunity to disaggregate and otherwise improve existing soil 
map units. This type of disaggregation would be best applied to 
topographically complex landscapes where two or three soil series 
vary predictably as a function of hillslope position and/or drain-
age class. The modeled maps of slope elements or position can be 
used to identify smaller, more homogenous soil areas and can help 
improve placement of soil map unit boundaries.
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